EE80J/180J Lecture 2 March 30, 2016

Lectures and Homework

Lecture 1: Introduction and Overview

Lecture 2: Scientific Notation, Energy Overview, Efficiency, Energy Basics

https://courses.soe.ucsc.edu/courses/ee80j/Spring16/01

look at: http://www.youtube.com/watch?v=80hLpNpmCZ8

Renewable Energy Sources around the world and in the US

Energy use Energy resources Our options

OVERVIEW OF RENEWABLE ENERGY SOURCES

Why are we interested in the renewable energy?

Why are we interested in the renewable energy?

Depletion of fossil fuel supply

Carbon emissions into the atmosphere

Scientific Notation

- Femto
- Pico
- Nano
- Micro
- ✤ Milli (m)
- ✤ Centi (cm)
- Deca
- Mega
- 🔹 Giga
- Tera
- Exa

- $10^{-15} = 1/1000,000,000,000,000$
- (p) $10^{-12} = 1/1000,000,000,000$
- (n) $10^{-9} = 1/1000,000,000$
- $10^{-6} = 1/1000,000$ (μ)
- $10^{-3} = 1/1000$
 - $10^{-2} = 1/100$
- (dm) $10^1 = 10$
- ♦ Kilo (k) 10³ = 1,000

(E)

(f)

- (M) $10^6 = 1,000,000$
- (G) $10^9 = 1,000,000,000$
 - 10¹²=1,000,000,000,000 (T)
- Peta (quad) (P) 10¹⁵=1,000,000,000,000,000
 - $10^{18} = 1,000,000,000,000,000,000$

Energy
Exa = 10¹⁸ = 1 quintillion
Example:
2011 Tohoku Earthquake

1.41 Exa Joules of energy (Ejoules)

US uses 94 Ejoules of energy/year

Basic Energy Concepts

• International System of Units

• Meter

- Kilogram
- Second

• What is the unit of energy?

Energy

- The energy supplied by force of one newton in causing movement through a distance of 1 meter.
- Joule (J) the unit of energy
- Energy (J) = Force (N) x Distance (m)

Power

- The rate at which energy is converted from one form to another or transferred from one place to another.
- Watt (W)
- Power (W) = Energy (J) / Time (sec)

Copyright © The Open University 2012

1 joule

Forms of Energy

Kinetic (thermal)

Gravitational

Electrical (chemical)

Nuclear (fission, fusion)

Carnot, Sadi (1824). Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Paris: Bachelier.

Use of kinetic energy

Nicolas Léonard Sadi Carnot in 1813 at age of 17 in the traditional uniform of a student of the École Polytechnique

Born	1 June 1796 Palais du Petit-Luxembourg, Paris, France			
Died	24 August, 1832 (age 36) Paris, France			
Nationality	French			
Fields	Physicist and engineer			
Institutions	French army			
Alma mater	École Polytechnique École Royale du Génie Sorbonne Collège de France			
Academic advisors	Siméon Denis Poisson André-Marie Ampère François Arago			
Known for	Carnot cycle Carnot efficiency Carnot theorem Carnot heat engine			

An aside on energy and power units

1 MJ = 1 million joules = 948 BTU

1 BTU (British Thermal Unit) = energy needed to raise 1 lb of water 1 degree Fahrenheit.

1 horsepower = 1 HP = 745 Watts

power at which a horse could turn a mill wheel
 24 feet in diameter at 2.4 revolutions/minute
 with a force of 180 lbs

P = 180lbs x 2.4rev/min x 2π x 12 ft.

= 33,000 ft lbs/min

= 745 kgm m/sec = 745 joule/sec = 745 watts

Watt devised this unit because his royalties paid for the steam engine were based upon the savings in coal from using earlier steam engines, or for farmers, using a horse, paid based upon the equivalent work his engine could do compared to a horse.

World Marketed Energy Use by Fuel Type 1980-2030

Quadrillion BTU (10¹⁵)

US Department of Energy; Energy Information Administration 2007

OIL AND GAS LIQUIDS 2004 Scenario

C. J. Campbell: "The Essence of Oil & Gas Depletion," Multi-Sci. Publ. Co., Ltd., Essex, UK, 2003

surce: Modified from Cambridge Energy Research Associates, Inc. (CERA). The use of this graphic was authorized in ance by CERA. No other use, or redistribution of this information is permitted without written permission by CERA."

Climate Change

Climate Forcing

Climate forcing has to do with the amount of energy we receive from the sun, and the amount of energy we radiate back into space. Variances in climate forcing are determined by physical influences on the atmosphere such as orbital and axial changes as well as the amount of greenhouse gas in our atmosphere.

Climate Forcing

Climate forcings are a major cause of climate change. A climate forcing is any influence on climate that originates from outside the climate system itself. The climate system includes the oceans, land surface, cryosphere, biosphere, and atmosphere.

Examples of external forcings include:

- 1. Surface reflectivity (albedo)
- 2. Human induced changes in greenhouse gases

Earth near the top of the atmosphere (TOA).

3. Atmospheric aerosols (volcanic sulfates, industrial output) Temperature These examples all influence the balance of energy entering and leaving the Earth system. These types of forcings are often referred to as radiative forcing and can be quantified in units of the extra energy in watts per meter squared (W m⁻²) entering the

NASA/GISS Climate Forcing &

http://ossfoundation.us/projects/environment/global-warming/radiative-climate-forcing

Figure 2. (a) Sea-level records of Shackleton (2000; green), Lea *et al.* (2002; blue) and Siddall *et al.* (2003; red), (b) climate forcings due to GHGs (CO₂, CH₄ and N₂O) and surface albedo and (c) palaeoclimate temperature change: calculated and observed temperature. Calculated temperature is the product of forcing (b) and climate sensitivity $(3/4^{\circ}C (W m^{-2})^{-1})$. Observed temperature is Vostok temperature (figure 1) divided by 2.

Hansen, et.al. Phil. Trans. R. Soc. A (2007) 365, 1925–1954

Who was Hansen?

James Hansen, NASA Scientist Who Raised Climate Change Alarm, Is Retiring

by MARK MEMMOTT

April 02, 2013 1:31 PM

The Times notes that:

"Perhaps the biggest fight of Dr. Hansen's career broke out in late 2005, when a young political appointee in the administration of George W. Bush began exercising control over Dr. Hansen's statements and his access to journalists. Dr. Hansen took the fight public and the administration backed down."

NASA scientist and climatologist James Hansen in 2009.

Christopher Furlong/Getty Images

DOE Energy Information Administration (2007)

EFFICIENCY AND CAPACITY

Efficiency = useful output/input x 100 (in %)

Capacity = actual energy output over a fixed period or time/ maximum possible output

Examples: a 1MW power plant operating at full capacity for 1 year would generate 8760 MWh of output if operating at 100% capacity (capacity factor of 1)

A 1 MW wind turbine might only produce 3000 MWh of output in 1 year since wind doesn't always blow, so its capacity would only be 34.2% (3000/8760)

Martin Green, UNSW

Compared to fossil fuels how has cost changed in last decade? .

Levelised costs of electricity for differents studies

(*) does not include waste disposal.

Size of this preview: 800 x 541 pixels. Other resolutions: 320 x 216 pixels | 640 x 432 pixels | 1,024 x 692 pixels | 1,280 x 865 pixels.

Estimated	Levelized Co	ost of New Ge	neration	Hesources, 20	17.14	
	Capacity Factor ≑ (%)	U.S. Average Levelized Cost for Plants Entering Service in 2017 (2010 USD/MWh)				
Plant Type 🗢		Levelized Capital \$ Cost	Fixed O&M [♀]	Variable O&M (including fuel)	Transmission Investment	Total System Levelized Cost
Conventional Coal	85	65.8	4.0	28.6	1.2	99.6
Advanced Coal	85	75.2	6.6	29.2	1.2	112.2
Advanced Coal with CCS	85	93.3	9.3	36.8	1.2	140.7
Natural Gas Fired						
Conventional Combined Cycle	87	17.5	1.9	48.0	1.2	68.6
Advanced Combined Cycle	87	17.9	1.9	44.4	1.2	65.5
Advanced CC with CCS	87	34.9	4.0	52.7	1.2	92.8
Conventional Combustion Turbine	30	46.0	2.7	79.9	3.6	132.0
Advanced Combustion Turbine	30	31.7	2.6	67.5	3.6	105.3
Advanced Nuclear	90	88.8	11.3	11.6	1.1	112.7
Geothermal	92	76.6	11.9	9.6	1.5	99.6
Biomass	83	56.8	13.8	48.3	1.3	120.2
Wind ¹	34	83.3	9.7	0.0	3.7	96.8
Solar PV ^{1,2}	25	144.9	7.7	0.0	4.2	156.9
Solar Thermal ¹	20	204.7	40.1	0.0	6.2	251.0
Hydro ¹	53	76.9	4.0	6.0	2.1	89.9

F101

¹Non-dispatchable (Hydro is dispatchable within a season, but nondispatchable overall-limited by site and season)

²Costs are expressed in terms of net AC power available to the orid for the installed capacity

10. A a b c d e Levelized Cost of New Generation Resources in the Annual Energy

Outlook 2011 P. Released January 23, 2012. Report of the US Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). For interested readers

ei.haas.berkeley.edu/pdf/newsletter/2012Spring.pdf

Economic discuss of comparative costs of electricity generation that includes subsidies, etc.

FIGURE 1.1 The world's first transistor, developed in 1947. It was a point-contact device roughly one centimeter across. (Courtesy of Lucent Technologies Beil Laboratories.)

Airplane Speed/Efficiency Evolution

Fig. 6 Absolute airplane speed record (Refs. 10 and 11).

McMasters & Cummings, Journal of Aircraft, Jan-Feb 2002

Prediction is very hard, especially about the future - Yogi Berra

Felix's forecasts of US energy consumption in year 2000 (early 1970's)

Vaclav Smil, Energy at the Crossroads, 2005 Potential Energy in Renewable Sources

We need to look at the "potential" of renewable energy resources.

Electric Potential of Wind

- Significant potential in US Great Plains, inner Mongolia and northwest China
- U.S.:

Use 6% of land suitable for wind energy development; practical electrical generation potential of ≈ 0.5 TW

• Globally:

Theoretical: 27% of earth's land is class >3 => 50 TW Practical: 2 TW potential (4% utilization)

Off-shore potential is larger but must be close to grid to be interesting; (no installation > 20 km offshore now)

Nate Lewis, Caltech

HAWT

Source: Berkeley Lab database (some data points suppressed to protect confidentiality)

http://www.eere.energy.gov/

2008 Wind Technologies Market Report

Offshore Wind Farm Nysted, Denmark

IC SA

- 2M euros/turbine (2002)
- 250 tonnes/turbine (55 tonnes the rotor and blades)
- 97% availability
- Average load: 30% of full capacity
- Service: 1 week/year/turbine
- Change oil after 5 years (900 liters/turbine)
- Lightening probability/ turbine (once in 7 years); 5 blades repaired

EE 181 Renewable Energies in Practice CA-Denmark Summer Program 2008

Geothermal Energy Potential

Cal-Den summer school

0.057 W/m²

11.6 TW

30 TW

- Mean terrestrial geothermal flux at earth's surface
- Total continental geothermal energy potential
- Oceanic geothermal energy potential

- Wells "run out of steam" in 5 years
- Power from a good geothermal well (pair)
- Power from typical Saudi oil well

5 MW 500 MW

 Needs drilling technology breakthrough (from exponential \$/m to linear \$/m) to become economical)

Energy from the Oceans?

п

Currents

Thermal Differences

Tides

COCKETELL'S WARE CONTOURING PARTS

Waves

DARK STATE

Rosenad

Ken Pedrotti, UCSC

Tidal Power

Biomass Energy Potential

Global: Top Down

- Requires Large Areas Because Inefficient (0.3%)
- 3 TW requires ≈ 600 million hectares = 6×10^{12} m²
- 20 TW requires $\approx 4 \times 10^{13} \text{ m}^2$
- Total land area of earth: 1.3x10¹⁴ m²
- Hence requires 4/13 = 31% of total land area

AMBIO 23,198 (Total Land surface 13,000 M Ha)

Chris Somerville, UC Berkeley

Biofuels

CROP	Harvest- able Biomass (tons/ acre)	Ethanol (gal/t)	Million acres needed for 35 billion gallons of ethanol	% 2006 harvested US cropland needed
Corn grain	4	500	70	25.3
Corn stover	3	300	105	38.5
Corn Total	7	800	40	15.3
Prairie	2	200	210	75.1
Sorghum	2	200	210	75.1
Switch- grass	6	600	60	20.7
Miscanthus	17	1700	18	5.8
Tank Algae*	80+	600+	< 10	< 2
*assumes CO	input			C

Dan Kammen, Berkeley

Algae Growing Facility Testbed at NOAA Labs in Santa Cruz

Jonathan Trent

п

Source: Food and Agriculture Organization (FAO), United Nations

Solar Energy Potential

- Theoretical: 1.2x10⁵ TW solar energy potential
- Practical: ≈ 600 TW solar energy potential
- Onshore electricity generation potential of ≈60 TW (10% conversion efficiency):
- · Photosynthesis: 90 TW
- Generating 12 TW (1998 Global Primary Power) requires
 0.1% of Globe = 5x10¹¹ m² (i.e., 5.5% of U.S.A.)

Solar Source

Energy Content	Magnitude
Solar Radiation on Earth	5,500,000 EJ
Solar Radiation on lower regions on Earth	3,800,000 EJ
Global Coal Resources	200,000 EJ
Global Plant Mass	10,000 EJ
Global Fossil Fuel Production	300,000 EJ
Typical Caribbean Hurricane	40 EJ
Hiroshima Bomb (1945)	0.000084 EJ

Solar Irradiation

Copyright © The Open University 2012

L.L. Kazmerski, National Renewable Energy Laboratory, National Center for Photovoltaics

Cost/Efficiency

Cost/watt and cost/ area are important

29

Boyle

Renewable

BASIC RESEARCH NEEDS FOR SOLAR ENERGY UTILIZATION

Chair: Nathan S. Lewis, Caltech, George Crabtree, Argonne

April 2005

PRIORITY RESEARCH DIRECTIONS

- <u>50% Efficient</u> Solar Cells
- <u>Plastic</u> Photovoltaics
- <u>Nanostructures</u>: Low Cost and High Efficiencies
- Fuels from Water and Sunlight: Efficient Photoelectrolysis
- Leveraging <u>Photosynthesis</u> for Production of Biofuel
- Bio-inspired Smart Matrix for Solar Fuels Production
- Solar-powered Catalysts for Energy-rich Fuels Formation
- Bio-inspired Molecular Assemblies for Integrating Photon-to-fuels Pathways
- Achieving <u>Defect-tolerant and Self-repairing Solar Conversion Systems</u>
- Solar Thermochemical Fuel Production
- New Experimental and Theoretical Tools
- Solar Energy Conversion Materials by Design
- Materials Architectures for Solar Energy: Assembling Complex Structures

Potential of Carbon Free Energy Sources

From: Basic Research Needs for Solar Energy Utilization, DOE 2005

Chris Somerville, UC Berkeley

Potential Contributions of Renewables in the UK

Committee on Climate Change (2011) The Renewable Energy Review, Committee on Climate Change

E = electricity, H = heat, T = transport

IEA World Energy Outlook Report (2010), International Energy Agency

Use of Different Energy Sources

Copyright © The Open University 2012

Figure 1.6b

Copyright © The Open University 2012

What is the energy solution?

Solar 1.2 x 10⁵ TW at Earth surface 600 TW practical

Wind 2-4 TW extractable

Tide/Ocean Currents 2 TW gross

Geothermal 12 TW gross over land small fraction recoverable

The need: ~ 20 TW by 2050

Biomass 5-7 TW gross all cultivatable land not used for food

Hydroelectric 4.6 TW gross 1.6 TW technically feasible 0.9 TW economically feasible 0.6 TW installed capacity

energy demand and GDP per capita (1980-2004)

п

A FRAMEWORK FOR PRO-ENVIRONMENTAL BEHAVIOURS Defra January 2008

The headline behaviour goals -Install insulation -Better energy management -Install microgeneration -Increase recycling -Waste less (food)-More responsible water usage -Use more efficient vehicles -Use car less for short trips -Avoid unnecessary flights (short haul)-Buy energy efficient products -Eat more food that is locally in season -Adopt lower impact diet

Elizabeth Shove, Prof. of Sociology, Lancaster University, UK (Guest Lecture Renewable Energy Class, UC Santa Cruz, Spring 2009) http://www.soe.ucsc.edu/classes/ee080j/Spring09/

Informs a lot of discussion about how to engender sustainability Considers habits in isolation Often implausible in terms of daily routines e.g. comfort, cleanliness

> Elizabeth Shove, Spring 2009 http://www.soe.ucsc.edu/classes/ee080j/Spring09/

A. Shekouri 7/28/20

choice, change, belief, attitude, information, behaviour

But what if we see consumption as consequence of ordinary practice?

What is required in order to be a 'normal' member of society?

How does this change, and with what consequence for sustainability?

Elizabeth Shove, Spring 2009 http://www.soe.ucsc.edu/classes/ee080j/Spring09/

Comfort and indoor environments

it is becoming normal to expect 22 degrees C inside, all year round, all over the world and whatever the weather outside (Standardizing Comfort => Prof. Fanger DTU)

Cleanliness and showering

it is becoming normal to shower once or twice a day (in the UK, the amount of water used for showering is expected to increase five fold between 1991-2021)

Laundering

From once a week to once a day or more, but with lower temperatures than ever before Similar trends – naturalisation of need

but possibly different dynamics

and different implications for the future

Comfort, cleanliness and convenience By Elizabeth Shove, 2003

Can Renewables Save the World?

- Fossil fuels have excellent energy characteristics.
- Wind/ geothermal are among the cheapest of renewables. There is potential for significant growth but they can not solve our energy problem.
- Solar energy has the potential to provide all our energy needs.
 - Currently expensive; it is intermittent.
- Currently no clear options for large scale energy storage
- Biomass has the potential to provide part of transportation energy needs
 - Cellulosic biofuels and algaes are interesting but they have not demonstrated large scale/long term potential. One has to consider the <u>full ecosystem impact</u> (water, food, etc.).

Can Renewables Save the World?

- If our goal is to have a planet where everybody has a level of life similar to developed countries, energy need is enormous and it is not clear if we can do this by working on the supply side alone.
- Energy efficiency is important but it is not enough.
- We need to consider changes in lifestyle, city planning and social structure (transportation, lodging, grid).